

Human Machine Interface YTPQC-HMI-7

User Manual

Version V2.1

Contents

1. Main Interface
2. Module & Para Setting
2.1 Module Setting2
2.2 Module Para Setting4
2.3 Start-up Mode Setting
2.4 Module Address Setting
2.5 Harmonic Compensation Function
2.6 Harmonic Number Selection7
2.7 Reactive Compensation Function7
2.8 Imbalanced Compensation Function
2.9 Native Mode Setting9
2.10 External CT Position Selection9
2.11 Internal CT Position Selection
2.12 CT Ratio Setting11
2.13 Compensation Capacity Setting12
2.14 Phase Sequence Self-adaption Setting14
2.15 Time Setting
2.16 Priority Mode Selection
2.17 Transformer capacity and load rate16
2.18 Target Voltage Value
2.19 Timing Power On/Off16
2.20 Save Para Button
3. Capacitance Parameter Setting
4. Curve Information
5. Fault Log
6. Version Information
7. Description of Typical Application Parameter Setting
7.1 Mode Selection and CT Setting
7.2 Module Compensation Capacity Setting

1. Main Interface

This manual mainly introduces the functional components of the user interface and the user operation information. The user can make the related operation through touching the display panel.

The boot main interface is shown in Figure 1-1.

• Main Interface: It mainly displays real-time data such as voltage and current of system side, load side and module.

• Module & Para Setting: The interface can set and view all modules and capacitor parameters.

• Curve Information: The interface can view the real-time curves of power factor, active and reactive current.

• Fault Log: The interface can view the fault information generated during the operation of the device.

• Power On/Off: The user can power on or power off.

• Status Indication: It displays module status, including standby, running and fault status.

	A Phase	B Phase	C Phase		APhase	B Phase	C Phase
System Voltage	0V	0V	0V	System Voltage THD	0%	0%	0%
System Current	0A	0.A	0.A	System Current THD	0%	0%	0%
Load Current	0A	0.A	0A	Load Current THD	0%	0%	0%
Module Output Current	0A	0A	0A	Capacitance Comp. Current	0A	0.A	0A
System Power Factor	0	0	0	IGBT Temperature	0	0	0
Load Power Factor	0	0	0				

Figure 1-1 Boot Main Interface

2. Module & Para Setting

Click the "Module & Para Setting" button, The parameter setting interface is shown in Figure 2-1.

• Module Setting: Set the number of modules, the number of capacitor control modules, and the communication address.

- Developer Options: It is used by our company's debugging personnel.
- X: Real-time Data: View the real-time data of the corresponding module.
- X: Para Setting: Set the parameters of the corresponding module.

			Mod- ule 1	Date	2020-06-18 11:20:23
Module Selection 01 Real-time Data Para Setting					Module Setting Developer Options
Main Interface	Module & Para Setting	Curve	Fault Log		Version Information

Figure 2-1 Module & Para Setting

2.1 Module Setting

Click the "Module Setting" button, set the number of modules in the "Module Number" Input box, as shown in Figure 2-2.

SHANGHAI YINGTONG

									Mod- ule	1	Date	2020 <mark>-</mark> 06-18 11:23:42
Module Setting:									-			
Module Number		6										
	Module 1	Module 2	Module 3	Module 4	Module 5	Module 6						
Module Address	1	2	3	4	5	6						
Capacitance Control Panel	0	0	0	0	0	0						
Description: The current module When the current m control board.	address is wodule is att	the same as ached with	the 485 cor capacitive c	nmunication control boar	n address of d :0 - no caj	the current	module. <mark>1</mark> ~25: trol board,1- w	can be set. ith capacitive	•			Return
Main Interfa	ce	Module	& Para Se	etting	Inf	Curve		Fault L	J			Version Information

Figure 2-2 Module Setting

The user can set the most twelve modules. The module addresses from 1 began to increase in turn. After setting, return to the module & para setting interface, as shown in Figure 2-3. Real-time data and parameter setting selection of multiple modules will be displayed on the interface.

					M	od- le 1	Date	2020-06-18 11:24:46
Module S	election							
	Real-time Data		Real-time Data				1	Module Setting
01	Para Setting	04	Para Setting					Developer
	Real-time Data		Real-time Data					Options
02	Para Setting	05	Para Setting					
	Real-time Data		Real-time Data					
03	Para Setting	06	Para Setting					
	\sim		-					
(J	1	Q	Q				S S
Ma	ain Interface	Module	e & Para Setting	Curve Information	Fault Log			Version Information

Figure 2-3 Module & Para Setting

2.2 Module Para Setting

Click the "Para Setting" option of the corresponding module, and the password input interface as shown in Figure 2-4 will pop up.

			Mod- ule 1	Date	2020-05-18 11:25:41
	Password Input Interface				
	Please enter	password:	_		
		*			
	Cancel		ок		
					_
Main Interface	Module & Para Setting	Curve	Fault Log		Version Information

Figure 2-4 Password Input Interface

After entering the password "1000", click "OK" button to enter the module & para setting interface as shown in Figure 2-5. (No operation is performed within 3 minutes after the password is entered, re-enter the password)

			ule 1	Date 2020-06-18 11:26:42
Start-up Mode :		Communication Start-up		Save Para
Native Address Input :		0		
Harm. Compensation Function:	1	Full Compensation		Harmonic Number Selection
Reactive Current Compensation Function	n:	Close Reactive Compensation Function		Page Down
Reactive Imbalance Compensation Functio	n:	Close Imbalance Compensation Function		Return
Main Interface	Module & Para Setting	Curve	Fault Log	Version Information

Figure 2-5 Para Setting Interface

2.3 Start-up Mode Setting

Click on "Start-up Mode" option box, the Figure 2-6 will pop up.

Start-up Mode Settings Interface	
Communication Start-up	
Autostart	
Button Start-up	
Autostart (Load Rate)	
Cancel	

Figure 2-6 Start-up Mode Settings

The module has four modes: communication start-up, autostart, button start-up and autostart (load rate).

Start-up Mode	Instructions
	In this mode, the device can not be started automatically
Communication	when it is powered on. It can be turned on or off through the
Start-up	cabinet button or the LCD screen (the function is exactly the
	same as that of the button start-up).
	In this mode, After the device is powered on, if there is no
Autostart	fault, the device will start automatically, It can be turned off
	through the cabinet button or the LCD screen.
	In this mode, the device can not be started automatically
Button Start-up	when it is powered on. It can be turned on or off through the
	cabinet button or the LCD screen.

	In this mode, the capacity and load rate of the transformer
	shall be set in the special parameter setting. When the
Autostart (Load	transformer load rate reaches the set value, the module will
Kate)	start automatically. When the transformer load rate is less
	than the set value, the module stops running.

2.4 Module Address Setting

The factory address of all modules defaults to 1. When the number of modules connected to the LCD screen is greater than 1, the address of each module needs to be reset. The starting address of the module is 1 and increases in turn. (Note: the module address of the cabinet has been completed during debugging in the factory)

The module interface are one-to-one correspondence with the module address. For example, the interface of module 1 corresponds to the module data of address 1, the interface of module 2 corresponds to the module data of address 2, and so on.

2.5 Harmonic Compensation Function

Click on "Harm. Compensation Function" option box, the Figure 2-7 will pop up.

Figure 2-7 Harmonic Compensation Function

The harmonic compensation mode includes selective compensation mode and full compensation mode.

Selective	The harmonic compensation is based on the specified harmonic
Compensation	compensation number set by "Harmonic Number Selection".
Full	The module compensates all odd harmonic currents within 50
Compensation	times.

2.6 Harmonic Number Selection

When the harmonic compensation mode is selective compensation, it is necessary to set "Harmonic Number Selection". Click on "Harmonic Number Selection" button, the Figure 2-8 will pop up. The user can choose the harmonic compensation times according to the need.

Figure 2-8 Harmonic Number Selection

2.7 Reactive Compensation Function

Click on "Reactive Current Compensation Function" option box, the Figure 2-9 will pop up. Set the opening and closing of reactive compensation function.

Figure 2-9 Reactive Compensation Function

2.8 Imbalanced Compensation Function

Click on "Imbalance Compensation Function" option box, the Figure 2-10 will pop up.

Set the opening and closing of imbalanced compensation function.

Figure 2-10 Imbalanced Compensation Function

2.9 Native Mode Setting

Click on "Native Mode" option box, the Figure 2-11 will pop up. The working mode of the module is selected according to its usage.

Native Mode Setting Interface	
Single Module	
Multi Module	
Single Module + Capacitor	
Cancel	

Figure 2-11 Native Mode Setting

Single Module	The system is configured with a module (without the capacitor).
Multigle Medule	The system is configured with multiple modules or multiple
Multiple Module	modules plus capacitors.
Single Module	The system is configured with a single module and a capacitor
+ Capacitor	that controls the switching of the capacitor.

2.10 External CT Position Selection

Click on "External CT Position Selection" option box, the Figure 2-12 will pop up.

EXT	anar of Position Selection Settings Interface	
	Load Side	
	Power Side	
	Cancel	

Figure 2-12 External CT Position Selection

The external CT position has two options: load side and power side, which are selected according to the actual installation position of the external CT.

Load Side	The external CT is installed between the module bus access point
Load Side	and the load
Derver Side	The external CT is installed between the module bus access point
Power Side	and the transformer.

2.11 Internal CT Position Selection

Click on "Internal CT Position Selection" option box, the Figure 2-13 will pop up.

Figure 2-13 Internal CT Position Selection

Single Module	The system is configured with a module (without the capacitor).
Multiple Module	The system is configured with multiple modules or module plus
/Mixing Tank	capacitor.

2.12 CT Ratio Setting

Click on "External/Internal CT Ratio Setting" option box, the Figure 2-14 will pop up. CT variable ratio parameters range from 50:5 to 20000:5. When setting CT variable ratio parameters, if it is necessary to set 1200:5, directly enter "1200" and confirm.

numeric:								
Min: 0				Max	x: 65535			
1200								
7	8	9	А	В	<-			
4	5	6	С	D	CE			
1	2	3	E	F	Del			
-	0		Exit	Ok				

Figure 2-14 CT Ratio Setting

The variable ratio of external CT and internal CT shall be set according to the transformer ratio, the number of modules and the rated capacity of modules. Modules with different capacities in parallel shall be set according to the rated capacity of the module.

For example, if the external CT variable ratio is 2000:5, the internal CT variable ratio is 800:5, and the number of parallel modules with the same capacity is 4, then the external CT variable ratio parameter of each module is 500:5, and the internal CT variable ratio parameter is 200:5.

2.13 Compensation Capacity Setting

Click on "Compensation Capacity" option box, the Figure 2-15 will pop up.

numeric:							
Min: 0				\mathbb{N}	fax: 150		
0							
7	8	9	A	В	<-		
4	5	6	C	D	CE		
1	2	3	E		Del		
-	0		Exit	Ok			

Figure 2-15 Compensation Capacity Setting

Description of	of compensation	capacity	parameter	setting:
----------------	-----------------	----------	-----------	----------

Reactive	Harmonic	Imbalanced	Module rated
Compensation	Compensation	Compensation	capacity
Capacity	Capacity	Capacity	
Х	Y*1.4	Z	P=X+Y+Z
Instructions	 The compensation set according to the ac (1kvar= 1.5A). The reactive compen- compensation capacity capacity (Z) of all para When the harmonic coefficient of 1.4 shall 	capacity of each func ctual demand, in units nsation capacity (X), h (Y) and imbalanced co llel modules must be c compensation capacity be multiplied.	tion should be of A (ampere) armonic ompensation onsistent. y is setted, the

2.14 Phase Sequence Self-adaption Setting

Click on "Phase Sequence Self-adaption" option box, the Figure 2-16 will pop up. The phase sequence self-adaption function can be turned on and off. The phase sequence self-adaption function is turned off by default. When the phase sequence error occurs and the module cannot be started, the phase sequence problem can be solved by turning on the phase sequence self-adaption function, but the CT sampling of each phase must be consistent with the main feed line.

P	nase Sequence Self-adaption Setting Interface	
	Open	
	Close	
	Cancel	

Figure 2-16 Phase Sequence Self-adaption Setting

2.15 Time Setting

Click on "Time Setting" option box, the Figure 2-17 will pop up. This interface is used to set the module system time.

2020] – [6	<u>[</u>	18
11	: [30	: [6

Figure 2-17 Time Setting

2.16 Priority Mode Selection

Click on "Priority Mode Selection" option box, the Figure 2-18 will pop up.

Figure 2-18 Priority Mode Selection

By default, the module is manual allocation of capacity mode. In the mode of manual allocation of capacity mode, the module compensates according to the capacity

settings of each function compensation.

In the other three priority modes, the compensation capacity of all functions of the module should be set to the rated capacity. The module will compensate the specified items in priority. If there is any remaining capacity of the device after the compensation, it will be equally distributed to other items for compensation.

2.17 Transformer capacity and load rate

When the starting mode of the module is "Autostart (Load Rate)", "Transformer Capacity" and "Load Rate" shall be set. The transformer capacity shall be set according to the actual transformer capacity on site, and the load rate shall be set according to the actual demand. When the transformer load rate reaches the set value, the module starts to run. When the transformer load rate is lower than the set value, the module stops running.

2.18 Target Voltage Value

When priority mode is "Voltage Support Priority" mode, it is necessary to set target voltage value.

Target voltage ranges from 176V to 264V. When the system voltage exceeds the voltage regulating upper limit Umax (Umax= target voltage value *107%) of the device, the device can output inductive current to reduce the voltage. When the system voltage is lower than the voltage regulating lower limit Umin(Umin= target voltage value *90%) of the device, the device can output capacitive current, thus increasing the voltage.

2.19 Timing Power On/Off

Click on "Timing Power On/Off" option box, the Figure 2-19 will pop up. This interface is used to set the timing on/off function of the module.

Tin	ning Power On	0	:	0
Tin	ning Power Off	0	: [0

Figure 2-19 Timing Power On/Off

2.20 Save Para Button

When the module parameter setting is completed, click on "Save Para" button, then the module will have a restart process, which can be judged by the operation of the fan.

3. Capacitance Parameter Setting

Module built-in capacitance control board: can output 16 channels thyristor control signal.

When the module controls the capacitor, it is necessary to set the capacitance. Enter the module & para setting interface, click on "Module Setting" button, and change the parameter of "Capacitance Control Board" of the module that controls the switching of capacitor to 1, as shown in Figure 3-1.

									Mod- ule	1	Date	2020-06-18 11:33:06
Module Setting:												
Module Number		6										
	Module 1	Module 2	Module 3	Module 4	Module 5	Module 6						
Module Address	1	2	3	4	5	6						
Capacitance Control Panel	1	0	0	0	0	0						
Description: The current module When the current m control board.	address is odule is att	the same as ached with	the 485 cor capacitive o	mmunication control boar	n <mark>a</mark> ddress of d :0 - no caj	f the current pacitive con	module. 1~255 rol board,1- wi	can be set. th capacitive	e			Return
Main Interfa	ce	Module	¢ Para Se	etting	Inf	Ø Curve		Fault I	J			Version

Figure 3-1 Capacitance Control Board Setting

Go back to the module & para setting interface, click the "Real-time Data" of module 1, and enter the interface as shown in Figure 3-2. You can see an additional column on the main interface showing the working status of capacitor, with a total of 16 capacitor switching signals. When the capacitor is put into the circuit, the corresponding indicator light will turn green. After the capacitor is removed, the indicator light will return to gray.

us cation Standby					Mod- ule	1 Date 20	20 <mark>-06-18</mark> 11:35:2
2 3			7	9 10 11		13 14	15
	A Phase	B Phase	C Phase		A Phase	B Phase	C Phase
System Voltage	0V	0V	0V	System Voltage THD	0%	0%	0%
System Current	0A	0A	0A	System Current THD	0%	0%	0%
Load Current	0A	0A	0A	Load Current THD	0%	0%	0%
Iodule Output Current	0.A	0A	0A	Capacitance Comp. Current	0A	0A	0A
System Power Factor	0	0	0	IGBT Temperature	0	0	0
Load Power Factor	0	0	0				
	- 25	2	7		d		ds.
\bigcirc	-14	5			Parror		
Main Interface	Module & Para	Setting In	formation	Fault Log	On		Off

Figure 3-2 Main Interface

Enter the module & para setting interface again, and you will see an additional "Capacitor Settings" option in the interface. as shown in Figure 3-3.

Figure 3-3 Module & Para Setting

Enter the interface of capacitance setting, as shown in Figure 3-4. This interface can perform switching capacitance test and select switching mode of capacitance.

• Test Mode: It is used by our company's debugging personnel.

• Manual Mode: Manual control of capacitance switching, not affected by load changes.

• Automatic Control Mode: According to the load reactive power detected by the module, an independent switching strategy is adopted for capacitor switching.

Figure 3-4 Capacitance Setting

Click "Page Down" to enter the interface as shown in Figure 3-5. The interface is used to monitor the total number of capacitor switches corresponding to the module. Click "Empty The Statistical Records" to clear all the switching times of 16-way capacitors.

	C				SHANGH	AI YINGTONG
					Mod- ule 1	Date 2020-06-18 11:42:01
Statistics Of Swit	ching Times					
Line 01	0	Line 09	0			Empty The Statistical Records
Line 02	0	Line 10	0]		
Line 03	0	Line 11	0]		
Line 04	0	Line 12	0]		Page Up
Line 05	0	Line 13	0]		
Line 06	0	Line 14	0			
Line 07	0	Line 15	0]		Return
Line 08	0	Line 16	0]		
Main Inte) rface	Module & Para S	l Setting	Curve Information	Fault Log	Version Information

Figure 3-5 Capacitance Switching Times

When clicking "Capacitor Parameter Setting" on the interface of capacitor setting, enter the interface shown in Figure 3-6. Click the gray area where parameters need to be set to set the parameters.

Ĭ.

			Mod- ule 1	Date	2020-05-18 11:43:07
Overvoltage Protection Value	0V				
Undervoltage Protection Value	ov				
THDV Protection Value	0%				
Capacitance Investment Delay	OS				
Capacitance Resection Delay	OS				
Capacitance Discharge Time	OS				Page Down
Capacitance Resection	0%				Return
Capacitance Resection	0%				
	Ö	Ø			<u>8</u>
Main Interface	Module & Para Setting	Curve Information	Fault Log		Version Information

Figure 3-6 Capacitor Parameter Setting

Click "Page Down" to enter the interface as shown in Figure 3-7. This interface is

used to set the number of groups and capacity of capacitance. When setting the capacity, the complementary capacity is set as the single-phase capacity, and the co-complementary capacity is set as the total capacity of the capacitor.

				Mod- ule	1	Date	2020-06-18 11:44:08
Partial Comple- ment Group Numbe	0	Co-complement 1 Capacity	0.0KVar				<u></u>
Partial Comple- ment 1 Capacity	0.0KVar	Co-complement 2 Capacity	0.0KVar				
Partial Comple- ment 2 Capacity	0.0KVar	Co-complement 3 Capacity	0.0KVar				
Partial Comple- ment 3 Capacity	0.0KVar	Co-complement 4 Capacity	0.0KVar				
Partial Comple- ment 4 Capacity	0.0KVar	Co-complement 5 Capacity	0.0KVar				Page Up
Partial Comple- ment 5 Capacity	0.0KVar	Co-complement 6 Capacity	0.0KVar				Page Down
Co-complement Group Number	0	Co-complement 7 Capacity	0.0KVar				Return
		Co-complement 8 Capacity	0.0KVar				
Main Interface	Module & Para Setting	Curve	Fault L) og			Version

Figure 3-7 Capacitor Parameter Setting

When the module controls the capacitor, the option "Capacitance Para Recovery Factory" will appear in the module parameter interface, as shown in Figure 3-8.

			Mod ule	1 Date	2020-06-18 11:46:29
Start-up Mode :	Co: Sta	mmunication rt-up			Save Para
Native Address Input :	0			\langle	Capacitance Para Recovery Factory
Harm. Compensation Function:	Ful	ll Compensation			Harmonic Number Selection
Reactive Current Compensation Function	Ctc	ose Reactive mpensation Function			Page Down
Reactive Imbalance Compensation Function	Cle Co	ose Imbalance mpensation Function			Return
	Ø	Curve			Version
Main Interface	Module & Para Setting Figure 3-8 Cap	Information Dacitance Para 1	Fault Log Recovery Factor	ry	Information

Click "Capacitance Para Recovery Factory", and the interface as shown in Figure 3-9 will pop up. After entering, restore factory settings for capacitor parameters. (After the capacitor parameter setting is completed, if the capacitor cannot be switched normally, you can try to restore the capacitor control parameter to factory setting and then reset the capacitor parameter)

			Mod- ule	1	Date	2020-06-18 11:47:57
Restore Factory Setti	ings:	Restore Factory Settings				
						Return
	Ø	0	\square			600
Main Interface	Module & Para Setting	Information	Fault Log			Information

Figure 3-9 Capacitance Para Recovery Factory

4. Curve Information

Click "Curve Information" to enter the interface as shown in Figure 4-1. The interface mainly contains real-time curve information: "System Power Factor", "Load Power Factor", "System Active Current" and "System Reactive Current". You can view the maximum, minimum, and average of phases A, B, and C.

Figure 4-1 Curve Information

Click "USB Download" and the interface as shown in Figure 4-2 will pop up about 5 seconds later. At this time, the inserted USB disk will automatically generate a table file with the suffix CSV. The maximum, minimum and average value of the system power factor A, B and C phases; The maximum, minimum and average value of the load power factor A, B and C phases; The maximum, minimum and average value of the system active current A, B and C phases; The maximum, minimum and average value of the system reactive current A, B and C phases; The maximum, minimum and average value of the system reactive current A, B and C phases; The maximum, minimum and average value of the system reactive current A, B and C phases; The maximum, minimum and average value of the system reactive current A, B and C phases and the number of switches per circuit of the 16-way capacitance are downloaded in the file.

Figure 4-2 USB Download

Taking the load power factor as an example, click phase A, phase B and phase C in Figure 4-3 to enter into Figure 4-4 respectively, corresponding to the data of the specific maximum, minimum and average value in a time.

Figure 4-3 Load Power Factor

SHANGHAI YINGTONG

					Mod- ule 1	Date 2020-06-18 11:56:06
Load Power Factor A Phase						
1.000		Ì				History Table
0.500						
	/ / /					
0.000		Content	Coordinate range	Current value	Unit	
0.500		Absolute clock	1Hour -1.000~1.000	11:19		
		Minimum Average Value	-1.000~1.000 -1.000~1.000			
10:55	1	1:25	2		11:55	Return
(≡)	Ð	Ø				30
Main Interface	Module & Para Setting	Curve		Fault Lo	g	Version

Figure 4-4 Load Power Factor A Phase

Click "History Table" and enter Figure 4-5 to view the data of corresponding time node. Click " \blacktriangleleft " and " \blacktriangleright " on the top horizontal slider to view the parameters, and " \blacktriangle " and " \blacktriangledown " on the vertical slider to view more data records.

5. Fault Log

Enter the fault logging interface as shown in Figure 5-1. This fault logging interface can view the faults occurred during operation. It includes the detailed time of faults, fault code, fault name and key system parameters. Click on the horizontal slider " \blacktriangleleft "and" \triangleright " to view the corresponding parameter information, and the vertical slider " \blacktriangle " and " \blacktriangledown " to view more fault records.

					Mod- ule 1	Date 20	20-05-18 11:5	\$7:0
NO.	Time	Module	Fault Code	Fault Name	VBUS+	VBUS-	Ifa	^
								~
۲.							>	.1
\mathbf{E})	5	k	2	R	ſ	ञ्च	
6		**			Ľ	Ŀ	<u> Version</u>	

Figure 5-1 Fault Log

6. Version Information

Click "Version Information" to enter the interface as shown in Figure 6-1. This interface can view the module version number, the hardware version number and the version number of the touch screen itself.

Figure 6-1 Version information

7. Description of Typical Application Parameter Setting

7.1 Mode Selection and CT Setting

(1) Parameter setting for single module application

		External	Internal		
Application	System	СТ	СТ	External CT	Internal CT
scenarios	Mode	Position	Position	Variable	Variable
		Selection	Selection	Ratio	Ratio
CT to load	Single	Load			
CT to load	Single	Loud			
side	Module	Side	Single	the actual	the actual
CT to	Single	Power	Module	CT ratio	CT ratio
power side	Module	Side			

(2) Related parameter setting for parallel application of multiple modules

		External	Internal	-	
Application	System	СТ	СТ	External CT	Internal CT
scenarios	Mode	Position	Position	Variable	Variable
sectiarios	Widde			Ratio	Ratio
		Selection	Selection		
CT to load	Multiple	Load		the actual	the actual
side	Module	Side	Multiple	CT ratio	CT ratio
CT to	Multiple	Power	Module	/the module	/the module
power side	Module	Side		number	number

7.2 Module Compensation Capacity Setting

For example, when a 75A APF module is used alone to compensate reactive power 25A and harmonic 50A, the reactive power compensation capacity =25A, the harmonic compensation capacity =70A (50A*1.4), and the unbalanced compensation capacity =0A.

SHANGHAI YINGTONG

Reactive	Harmonic	Imbalanced	Modulo rotod
Compensation	Compensation	Compensation	
Capacity	Capacity	Capacity	capacity
Х	Y*1.4	Z	P=X+Y+Z
Instructions	 The compensation of set according to the according to the according to the accordination (1kvar=1.5A). The reactive compensation capacity capacity (Z) of all paralises. When the harmonic coefficient of 1.4 shall 	capacity of each func etual demand, in units insation capacity (X), h (Y) and imbalanced co llel modules must be co compensation capacity be multiplied.	tion should be of A (ampere) armonic ompensation onsistent. y is setted, the